Note 1 : Recommended statistics for this type of classification highlighted in aqua
Note 2 : The recommendation system assumes the input is the result of classification over the entire dataset, not just a subset. If the confusion matrix is based on test data classification, the recommendation may not be valid.
Actual | Predict
|
Class | 0 | 1 | 2 | Description |
ACC | 1.0 | 0.84211 | 0.84211 | Accuracy |
AGF | 1.0 | 0.74475 | 0.91575 | Adjusted F-score |
AGM | 1.0 | 0.86736 | 0.84838 | Adjusted geometric mean |
AM | 0 | -6 | 6 | Difference between automatic and manual classification |
AUC | 1.0 | 0.8125 | 0.89655 | Area under the ROC curve |
AUCI | Excellent | Very Good | Very Good | AUC value interpretation |
AUPR | 1.0 | 0.8125 | 0.8 | Area under the PR curve |
BB | 1.0 | 0.625 | 0.6 | Braun-Blanquet similarity |
BCD | 0.0 | 0.07895 | 0.07895 | Bray-Curtis dissimilarity |
BM | 1.0 | 0.625 | 0.7931 | Informedness or bookmaker informedness |
CEN | 0 | 0.24409 | 0.25 | Confusion entropy |
DOR | None | None | None | Diagnostic odds ratio |
DP | None | None | None | Discriminant power |
DPI | None | None | None | Discriminant power interpretation |
ERR | 0.0 | 0.15789 | 0.15789 | Error rate |
F0.5 | 1.0 | 0.89286 | 0.65217 | F0.5 score |
F1 | 1.0 | 0.76923 | 0.75 | F1 score - harmonic mean of precision and sensitivity |
F2 | 1.0 | 0.67568 | 0.88235 | F2 score |
FDR | 0.0 | 0.0 | 0.4 | False discovery rate |
FN | 0 | 6 | 0 | False negative/miss/type 2 error |
FNR | 0.0 | 0.375 | 0.0 | Miss rate or false negative rate |
FOR | 0.0 | 0.21429 | 0.0 | False omission rate |
FP | 0 | 0 | 6 | False positive/type 1 error/false alarm |
FPR | 0.0 | 0.0 | 0.2069 | Fall-out or false positive rate |
G | 1.0 | 0.79057 | 0.7746 | G-measure geometric mean of precision and sensitivity |
GI | 1.0 | 0.625 | 0.7931 | Gini index |
GM | 1.0 | 0.79057 | 0.89056 | G-mean geometric mean of specificity and sensitivity |
HD | 0 | 6 | 6 | Hamming distance |
IBA | 1.0 | 0.39062 | 0.95719 | Index of balanced accuracy |
ICSI | 1.0 | 0.625 | 0.6 | Individual classification success index |
IS | 1.54749 | 1.24793 | 1.34104 | Information score |
J | 1.0 | 0.625 | 0.6 | Jaccard index |
LS | 2.92308 | 2.375 | 2.53333 | Lift score |
MCC | 1.0 | 0.70076 | 0.68983 | Matthews correlation coefficient |
MCCI | Very Strong | Strong | Moderate | Matthews correlation coefficient interpretation |
MCEN | 0 | 0.26532 | 0.26439 | Modified confusion entropy |
MK | 1.0 | 0.78571 | 0.6 | Markedness |
N | 25 | 22 | 29 | Condition negative |
NLR | 0.0 | 0.375 | 0.0 | Negative likelihood ratio |
NLRI | Good | Poor | Good | Negative likelihood ratio interpretation |
NPV | 1.0 | 0.78571 | 1.0 | Negative predictive value |
OC | 1.0 | 1.0 | 1.0 | Overlap coefficient |
OOC | 1.0 | 0.79057 | 0.7746 | Otsuka-Ochiai coefficient |
OP | 1.0 | 0.61134 | 0.72672 | Optimized precision |
P | 13 | 16 | 9 | Condition positive or support |
PLR | None | None | 4.83333 | Positive likelihood ratio |
PLRI | None | None | Poor | Positive likelihood ratio interpretation |
POP | 38 | 38 | 38 | Population |
PPV | 1.0 | 1.0 | 0.6 | Precision or positive predictive value |
PRE | 0.34211 | 0.42105 | 0.23684 | Prevalence |
Q | None | None | None | Yule Q - coefficient of colligation |
QI | None | None | None | Yule Q interpretation |
RACC | 0.11704 | 0.1108 | 0.09349 | Random accuracy |
RACCU | 0.11704 | 0.11704 | 0.09972 | Random accuracy unbiased |
TN | 25 | 22 | 23 | True negative/correct rejection |
TNR | 1.0 | 1.0 | 0.7931 | Specificity or true negative rate |
TON | 25 | 28 | 23 | Test outcome negative |
TOP | 13 | 10 | 15 | Test outcome positive |
TP | 13 | 10 | 9 | True positive/hit |
TPR | 1.0 | 0.625 | 1.0 | Sensitivity, recall, hit rate, or true positive rate |
Y | 1.0 | 0.625 | 0.7931 | Youden index |
dInd | 0.0 | 0.375 | 0.2069 | Distance index |
sInd | 1.0 | 0.73483 | 0.8537 | Similarity index |
Generated By PyCM Version 4.2